学校主页
Faculty

师资队伍

首页 / 师资队伍 / 教授 / 正文
Faculty

教授

张帆

职称职务:
特聘教授、研究员、深圳北斗应用技术研究院院长
所在学院:
计算机科学与控制工程学院/深圳北斗应用技术研究院
邮箱:
zhangfan@sibat.cn
个人主页
职称职务 特聘教授、研究员、深圳北斗应用技术研究院院长 前海外职称职务
所在学院 计算机科学与控制工程学院/深圳北斗应用技术研究院 邮箱 zhangfan@sibat.cn
个人主页

个人简介

研究领域

城市大数据处理、边缘计算、海量数据分析挖掘、机器学习和空间计算。

个人简介

博士,中国科学院深圳先进技术研究院研究员,博士生导师,深圳北斗应用技术研究院院长。深圳高效能云计算工程实验室副主任,深圳北斗位置服务技术工程实验室副主任。获评中国科学院青年创新促进会会员。发表论文共80余篇,其中被EI/SCI检索60余篇,部分文章发表在计算机网络、移动计算等领域国际顶级杂志及会议IEEE TWC、IEEE TITS、TVT、MobiCom、INFOCOM、KDD、ICDE、ICDCS、GIS、IPSN、SenSys上。曾主持及参与国家重点研发计划、国家自然科学基金、中科院“感知中国”先导专项、国家发改委、粤港创新基金、广东省产学研、深圳市科创委等重大项目。申请国家发明专利40余项,授权发明专利20余项,获得2014年中国智能交通协会科学技术奖一等奖、2022年广东省技术发明二等奖、2022年深圳市技术发明二等奖、2023年地理信息科技进步奖一等奖。

学习工作经历

学习经历

2004/09 - 2007/12,华中科技大学,信息与通信工程,博士

2002/09 - 2004/06,华中科技大学,通信与信息系统,硕士

1998/09 - 2002/06,华中科技大学,通信工程,学士

工作经历

2014.09 - 至今 深圳北斗应用技术研究院有限公司,院长

2011/08-至今 中国科学院深圳先进技术研究院 正高级工程师/研究员

2010/09 - 2011/08 美国内布拉斯加大学林肯分校,博士后

2009/11 - 2010/08 美国新墨西哥大学,博士后

2008/03 - 2009/06 香港城市大学,资深副研究员

学术成果

所获荣誉

中国智能交通协会科学技术奖-基于云环境的城市综合交通信息集成与服务关键技术及应用-一等奖

中国地理信息产业协会科技进步奖-群体行为时空计算关键技术及城市治理应用-一等奖

广东省技术发明奖-城市交通感知融合与智能推演技术及应用-二等奖

深圳市技术发明奖-城市交通感知融合与智能推演技术及应用-二等奖

科研成果

项目

深圳市科技重大专项,KJZD20230923114109017,重202324118 面向城市智慧治理的低功耗类脑计算系统关键技术研发,2024/01-至今,项目负责人

国家重点研发计划,2023YFC3321600,粤港澳大湾区口岸高效通关与风险预警技术研究及应用示范,2023/11-至今,课题负责人

深圳市承接国家重大科技项目,CJGJZD20210408091600002,深圳市“承接‘城市大数据三元空间协同计算理论与方法’之‘基于人机融合的群智认知理论与方法’与‘智能城市服务平台与应用验证’的产业化应用研究”,2022/01至今,项目负责人

深圳市科创委应用示范项目,KJYY20180717151006635,示范(安):新一代基于云平台的智能安全用电远程监控技术应用示范,2018/12-2020/12,已验收,参与单位负责人

深圳市科创委应用示范项目,KJYY20170412144902432,应用大数据巡检的消防云城监控平台应用示范,2017/09-2019/09,参与单位负责人

深圳市科创委计划,KQCX2015040111035011,基于城市大数据的移动行为分析及智能交通应用研究,2015/09-2017/09,项目负责人

国家重点基础研究计划(973计划),2015CB352400、城市大数据三元空间协同计算理论与方法、2015/01-2019/12,1500万元,已验收、青年骨干

深圳市科创委创业资助项目,CYZZ20150403111012661,城市大数据分析平台及服务,2015/09/01-2017/08/31,项目负责人

深圳市发改委新一代信息技术产业专项,深圳市北斗位置服务技术工程实验室,2013.1-2014.12,实验室副主任

论文

1)Sun L, Zhao J, Zhang J, et al. Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data[J]. Physica A: Statistical Mechanics and its Applications, 2024, 636: 129522.

2)Wang G, He S, Jiang L, et al. FairMove: A Data-Driven Vehicle Displacement System for Jointly Optimizing Profit Efficiency and Fairness of Electric For-Hire Vehicles[J]. IEEE Transactions on Mobile Computing, 2023.

3)Guo B, Li M, Zhou M, et al. A new anomalous travel demand prediction method combining Markov model and complex network model[J]. Physica A: Statistical Mechanics and Its Applications, 2023, 619: 128697.

4)Ou J, Sun J, Zhu Y, et al. STP-TrellisNets+: Spatial-temporal parallel TrellisNets for multi-step metro station passenger flow prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2022.

5)Zhao J, Zhang L, Ye K, et al. GLTC: A metro passenger identification method across AFC data and sparse wifi data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18337-18351.

6)Guo B, Yang H, Zhou H, et al. Understanding individual and collective human mobility patterns in twelve crowding events occurred in Shenzhen[J]. Sustainable Cities and Society, 2022, 81: 103856.

7)Wang K, Guo B, Yang H, et al. A semi-supervised co-training model for predicting passenger flow change in expanding subways[J]. Expert Systems with Applications, 2022, 209: 118310.

8)Zhang J, Liu X, Tan X, et al. Nighttime vitality and its relationship to urban diversity: an exploratory analysis in Shenzhen, China[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 15: 309-322.

9)Fang Z, Yang G, Zhang D, et al. MoCha: Large-scale driving pattern characterization for usage-based insurance[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 2849-2857.

10)Wang C, Song Y, Wei Y, et al. Towards minimum fleet for ridesharing-aware mobility-on-demand systems[C]//IEEE INFOCOM 2021-IEEE Conference on Computer Communications. IEEE, 2021: 1-10.